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The Ramsey Problem

An individual or a government tries to allocate resources between
investement and consumption to maximize intertemporal welfare

k (t) capital at time t, c (t) consumption at time t
f (k) instantaneous production if capital is k

f (k (t)) = c (t) +
dk
dt

balance equation

If interest rate is ρ > 0, and utility of consuming c is u (c), then the
problem at time t = 0 is:

max
Z ∞

0
e�ρtu (c (t)) dt,

dk
dt

= f (k (t))� c (t) and k (0) = k0
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The optimal consumption path

Under standard assumptions on f and u (concavity and Inada conditions)
there is a unique optimal control c (t) leading to a stationary point k∞

dk
dt = f (k (t))� c (t)

k (0) = k0
=) k (t) �! k∞ 8k0

which satis�es f (k∞) = c∞ = σ (k∞) and is characterized by

f 0 (k∞) = ρ. independent of k0 and u (c)

This control can be implemented by an optimal strategy
c (t) = σ (k (t)). which is given by the HHB equation. In the caseof
logarithmic utility u (c) = ln c , this is:

ln v 0 � fv 0 = ρv � 1, k � 0

σ(k) =
1

v 0 (k)
,
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Sumaila-Walters discounting

the population grows at the rate γ

each generation has a pure rate of time preference ρ

each generation discounts at the rate δ < ρ the utility of future
generations

For an event which is to happen at time t, we �nd that the discount factor
to apply is:

R (t) = e�ρt +γ
Z t

0
e�δse�ρ(t�s)ds = (1� λ) e�ρt +λe�δt , with λ =

γ

ρ� δ

Note that this corresponds to a non-constant rate of time preference

r (t) = ln (1� λ) e�ρt + λe�δt

r (t) ' �δ in the long term

r (t) ' λρ+ (1� λ) δ in the short term
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The Ramsey problem revisited

max
Z ∞

0
R (t) u (c (t)) dt,

dk
dt

= f (k (t))� c (t) and k (0) = k0

where the discount function R (t) satis�es:

R (t) � R (0) = 1, R (t) �! 0 when t �! ∞

There is still a unique optimal control c̄ (t), satisfying the Euler equation:

R 0 (s)
R (s)

+
u00 (c (s))
u0 (c (s))

dc
ds
+ f 0 (k (s)) = 0 for 0 � s (0-optimal)
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Optimal today, suboptimal tomorrow
The problem of time-inconsistency

At some later time t > 0, the decision-maker may reconsider the problem:

max
Z ∞

t
R (t � s) u (c (s)) ds

dk
ds
= f (s, k (s))� c (s) , s � t, k (t) = kt

There is still an optimal trajectory s !
�
c̃ (s) , k̃ (s)

�
, starting from

k̃ (t) = k̄ (t) , which satis�es the Euler equation from

R 0 (s � t)
R (s � t) +

u00 (c (s))
u0 (c (s))

dc
ds
+ f 0 (k (s)) = 0 for t � s (t-optimal)

If (c̄ (t) , k̄ (t)) =
�
c̃ (s) , k̃ (s)

�
, then this function must satify both

equations on s � t. This is clearly not possible unless R is an
exponential. The policy t �! (c̄ (t) , x̄ (t)), which is optimal from the
time 0 point of view, is suboptimal at later times
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How do we deal with time inconsistency ?

What is rational behaviour?

The concept of an equilibrium strategy:

A strategy c = σ (k) has been announced and is public knowledge.

The decision-maker at time t inherits a capital k (t) from previous
ones.

She can commit all the decision-makers in [t, t + ε] ,where ε > 0 is
vanishingly small.

She expects all later ones to apply the strategy σ

She asks herself if it is in her own interest to apply the same strategy,
that is, to consume σ (k (t)).

σ is an equilibrium strategy if the answer is yes.
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Equilibrium strategies: de�nition

If σ is applied throughout, the trajectory is k0 (t)

During [t, t + ε] she changes to c say, getting u (c) ε.
On [t + ε,∞]. the strategy σ takes over, and the new trajectory is
kε (t) = k0 (t) + εk1 (t)

dk1
ds

=

�
∂f
∂k
(k0 (s))�

∂σ

∂k
(k0 (s))

�
k1 (s) (1)

k1 (t + ε) = σ (t, k)� c (�rst variation) (2)

The total gain over ε = 0 is

ε

�
u (c)� u (σ(k (t)))

+
R ∞
t R (s � t)

∂u
∂c (σ (k0 (s)))

∂σ
∂k (s, k0 (s)) k1 (s) ds

�
We shall say that σ : [0,T ]� Rd ! Rd is an equilibrium strategy
if, for every t and k, the maximum in the brackets is attained for
c = σ (k (t)):

Ivar Ekeland and Ali Lazrak (PIMS Summer School on Perceiving, Measuring and Managing Risk)Long-tem policy-making, Lecture 5 July 7, 2008 8 / 21



Equilibrium strategies: de�nition

If σ is applied throughout, the trajectory is k0 (t)
During [t, t + ε] she changes to c say, getting u (c) ε.

On [t + ε,∞]. the strategy σ takes over, and the new trajectory is
kε (t) = k0 (t) + εk1 (t)

dk1
ds

=

�
∂f
∂k
(k0 (s))�

∂σ

∂k
(k0 (s))

�
k1 (s) (1)

k1 (t + ε) = σ (t, k)� c (�rst variation) (2)

The total gain over ε = 0 is

ε

�
u (c)� u (σ(k (t)))

+
R ∞
t R (s � t)

∂u
∂c (σ (k0 (s)))

∂σ
∂k (s, k0 (s)) k1 (s) ds

�
We shall say that σ : [0,T ]� Rd ! Rd is an equilibrium strategy
if, for every t and k, the maximum in the brackets is attained for
c = σ (k (t)):

Ivar Ekeland and Ali Lazrak (PIMS Summer School on Perceiving, Measuring and Managing Risk)Long-tem policy-making, Lecture 5 July 7, 2008 8 / 21



Equilibrium strategies: de�nition

If σ is applied throughout, the trajectory is k0 (t)
During [t, t + ε] she changes to c say, getting u (c) ε.
On [t + ε,∞]. the strategy σ takes over, and the new trajectory is
kε (t) = k0 (t) + εk1 (t)

dk1
ds

=

�
∂f
∂k
(k0 (s))�

∂σ

∂k
(k0 (s))

�
k1 (s) (1)

k1 (t + ε) = σ (t, k)� c (�rst variation) (2)

The total gain over ε = 0 is

ε

�
u (c)� u (σ(k (t)))

+
R ∞
t R (s � t)

∂u
∂c (σ (k0 (s)))

∂σ
∂k (s, k0 (s)) k1 (s) ds

�
We shall say that σ : [0,T ]� Rd ! Rd is an equilibrium strategy
if, for every t and k, the maximum in the brackets is attained for
c = σ (k (t)):

Ivar Ekeland and Ali Lazrak (PIMS Summer School on Perceiving, Measuring and Managing Risk)Long-tem policy-making, Lecture 5 July 7, 2008 8 / 21



Equilibrium strategies: de�nition

If σ is applied throughout, the trajectory is k0 (t)
During [t, t + ε] she changes to c say, getting u (c) ε.
On [t + ε,∞]. the strategy σ takes over, and the new trajectory is
kε (t) = k0 (t) + εk1 (t)

dk1
ds

=

�
∂f
∂k
(k0 (s))�

∂σ

∂k
(k0 (s))

�
k1 (s) (1)

k1 (t + ε) = σ (t, k)� c (�rst variation) (2)

The total gain over ε = 0 is

ε

�
u (c)� u (σ(k (t)))

+
R ∞
t R (s � t)

∂u
∂c (σ (k0 (s)))

∂σ
∂k (s, k0 (s)) k1 (s) ds

�

We shall say that σ : [0,T ]� Rd ! Rd is an equilibrium strategy
if, for every t and k, the maximum in the brackets is attained for
c = σ (k (t)):

Ivar Ekeland and Ali Lazrak (PIMS Summer School on Perceiving, Measuring and Managing Risk)Long-tem policy-making, Lecture 5 July 7, 2008 8 / 21



Equilibrium strategies: de�nition

If σ is applied throughout, the trajectory is k0 (t)
During [t, t + ε] she changes to c say, getting u (c) ε.
On [t + ε,∞]. the strategy σ takes over, and the new trajectory is
kε (t) = k0 (t) + εk1 (t)

dk1
ds

=

�
∂f
∂k
(k0 (s))�

∂σ

∂k
(k0 (s))

�
k1 (s) (1)

k1 (t + ε) = σ (t, k)� c (�rst variation) (2)

The total gain over ε = 0 is

ε

�
u (c)� u (σ(k (t)))

+
R ∞
t R (s � t)

∂u
∂c (σ (k0 (s)))

∂σ
∂k (s, k0 (s)) k1 (s) ds

�
We shall say that σ : [0,T ]� Rd ! Rd is an equilibrium strategy
if, for every t and k, the maximum in the brackets is attained for
c = σ (k (t)):

Ivar Ekeland and Ali Lazrak (PIMS Summer School on Perceiving, Measuring and Managing Risk)Long-tem policy-making, Lecture 5 July 7, 2008 8 / 21



Quasi-exponential discount

From now on, we take the following speci�cation:

R (t) = λ exp (�δt) + (1� λ) exp (�ρt)

De�nition
An equilibrium strategy converges to k∞ if the corresponding trajectories
all converge to k∞

dk
dt
= f (k)� σ (k) , k∞ = lim

t�!∞
k (t) 8k (0)
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An existence theorem

De�ne k � k by:

f 0 (k) = λδ+ (1� λ) ρ, f 0 (k̄) =
1

λ
δ +

1�λ
ρ

Theorem
For every k 2 [k , k̄ ], there exists an equilibrium strategy converging to k∞

There are stationary points, as in the exponential case, but

There are too many ! The problem of rational choice is not solved
yet

We will show later that converging to the highest capital k̄ is the only
rational strategy.
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Necessary conditions

If such an equilibrium strategy σ (k) exists, de�ne the value functions:

v (k) =
Z ∞

0

�
λe�δt + (1� λ) e�ρt

�
u (σ (k (t))) dt

w (k) =
Z ∞

0

�
λe�δt � (1� λ) e�ρt

�
u (σ (k (t))) dt

They satisfy the following system of ODEs:�
f � 1

v 0

�
v 0 � ln v 0 = av + bw�

f � 1
v 0

�
w 0 � (2λ� 1) ln v 0 = bv + cw

with a = (δ+ ρ) /2 and b = (δ� ρ) /2, and we have:

σ (k) = 1/v 0 (k) , σ (k∞) = 1/v 0 (k∞) = f (k∞)
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Su¢ cient conditions

Theorem
If the system �

f � 1
v 0

�
v 0 � ln v 0 = av + bw�

f � 1
v 0

�
w 0 � (2λ� 1) ln v 0 = bv + cw

has a C 2 solution v (k) ,w (k) near k∞ with:

v 0 (k∞) =
1

f (k∞)

av 0 (k∞) + bw 0 (k∞) =
f 0 (k∞)

f (k∞)

then σ (k) := 1/v 0 (k) is an equilibrium strategy converging to k∞
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Changing unknowns

µ (k) := av (k) + bw (k)� ln f (k) ,

Take (v (k) , µ (k)) instead of (v (k) ,w (k)) as unknowns. The �rst
equation becomes:

fv 0 � 1� ln fv 0 = µ

if µ < 0 this equation has no solution

if µ = 0 the only solution is fv 0 = 1

if µ > 0 it has two solutions fv 0 = 1+ xi (µ) , i = 1, 2, with
x (0) = 0, x (µ) � �pµ
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Where the wild things are

dν

dk
=

1+ x (µ)
f (k)

µ (k) � 0

dµ

dk
=

1
f (k)

1+ x (µ)
x (µ)

D (k, µ, v) + a
1+ x (µ)
f (k)

� f
0 (k)
f (k)

D = aµ+
�
b2 � a2

�
v + a ln f (k) + (2λ� 1) b ln 1+ x (µ)

f (k)

Initial condition:

µ (k∞) = 0, v (k∞) =
a� (2λ� 1) b

a2 � b2 ln f (k∞) , x (0) = 0

Bearing in mind that x is not smooth x (µ) � �pµ
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Changing variables

Take x as the independent variable, so µ = x � ln (1+ x)

dk
dx

= f (k)
x2

1+ x
1

D (x , k, ν)
,

dν

dx
= x2

1
D (x , k, ν)

D (x , k, v) =�
2ax +

�
b2 � a2

�
v + [(2λ� 1) b� a] ln 1+xf

�
(1+ x)� xf

Initial condition:

x (0) = 0, D (0, k (0) , ν (0)) = 0
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Blowup

We introduce a new variable s, and the system becomes

dx
ds

= D (x , k, v)

dk
ds

= f (k)
x2

1+ x
dv
ds

= x2

The linearized system near (0, k (0) , ν (0)) then is:

d
dt

0@ x
k
v

1A =

0@ a+ (2λ� 1) b� f 0 (a� (2λ� 1) b) f 0f b2 � a2
0 0 0
0 0 0

1A0@ x
k
v

1A
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Concluding the proof

If a+ (2λ� 1) b 6= f 0 (k∞), we can use the central manifold theorem. If
a+ (2λ� 1) b = f 0 (k∞), we must to a further blowup. In all cases, we
�nd a smooth solution(possibly several) with:

v 0 (k∞) =
1

f (k∞)
,

w 0 (k∞) =
1

f (k∞)

2f 0 (k∞)� (δ+ ρ)

δ� ρ

v 00 (k∞) =
(δ� f 0 (k∞)) (f 0 (k∞)� δ)

f 0 (k∞)� λδ� (1� λ) ρ

1
f 2 (k∞)
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More about the degenerate case

Computing D (x , k, v) when f 0 (k∞) = a+ (2λ� 1) b, we get:

dx
ds

= α (x) x2 + β (k) (k � k∞) + γ (k) (k � k∞) x +
�
b2 � a2

�
(1+ x) (v � v̄)

dk
ds

= x2
f (k)
1+ x

dv
ds

= x2

where α, β,γ are smooth functions of one variable such that:

2α (0) = 3a+(2λ� 1) b, β (0) = ((2λ� 1) b� a) f
0 (k∞)

f (k∞)
, γ (0) = β (0)� f 00 (k∞)

We then perform the change of variables K (s) := (k (s)� k∞) x (s)
�2

and V (s) := (v (s)� v∞) x (s)
�2 One �nds dKds (0) = f (k̄) 6= 0, one can

take K instead of s as the independent variable, and we get a regular
system of ODEs for x (K ) and V (K )
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Estimates

Linearizing the equation of motion dk
dt = f (k)�

1
v 0 :

dx
dt
=

 
f 0 (k∞) +

v 00 (k∞)

v 0 (k∞)
2

!
x

Convergence to k∞ requires that f 0 (k∞) +
v 00(k∞)

v 0(k∞)
2 � 0, hence:

λδ+ (1� λ) ρ � f 0 (k∞) �
1

λ
δ +

1�λ
ρ
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Stability analysis

Take a point k∞. At a neighbouring point kε = k∞ + ε compare two
equilibrium strategies

1 σ0 converging to k∞

2 σε converging to kε

v0 =

�
λ

δ
+
(1� λ)

ρ

�
ln f (k∞) + v 00 (k∞) ε

vε =

�
λ

δ
+
(1� λ)

ρ

�
ln f (kε)

vε � v0 =

��
λ

δ
+
(1� λ)

ρ

�
f 0 (k∞)� 1

�
ε

f (k∞)

The bracket is negative, so vε is a superior strategy if ε > 0, which is
always possible unless k∞ = /k (so that kε is not an allowable point for
convergence)
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Rational behaviour again

Z ∞

0
[λ exp (�δt) + (1� λ) exp (�ρt)] u (c (t)) dt,

dk
dt
= f (k (t))� c (t) and k (0) = k0

This has in�nitely many equilibrium strategies, each of them converging to
some k 2 [k, k̄ ]

If k < k̄, future generations will eventually �nd k̄ more advantageous

The whole strategy then unravels from the end: it is not credible

Rational choice is k = k̄
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