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The Ramsey Problem

An individual or a government tries to allocate resources between
investement and consumption to maximize intertemporal welfare

k (t) capital at time t, ¢ (t) consumption at time t

f (k) instantaneous production if capital is k

dk
f(k(t))=c(t)+ pm balance equation

If interest rate is p > 0, and utility of consuming c is u (c), then the
problem at time t = 0 is:

max /00 e Ptu(c(t))dt,
0

Kk (8)) = c(¢) and k (0) = ko

dt
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The optimal consumption path

Under standard assumptions on f and u (concavity and Inada conditions)
there is a unique optimal control c (t) leading to a stationary point ke

G =1(k(t)—c(t)
k (0) = ko

which satisfies f (keo) = coo = 0 (ko) and is characterized by

— k(t) — ke Vko

f' (keo) = p. independent of kg and u (c)

This control can be implemented by an optimal strategy
c(t) = o (k(t)). which is given by the HHB equation. In the caseof
logarithmic utility v (c) = Inc, this is:

Inv —f/ = pv—1 k>0
1
k) —
0.() V/(k)’
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Sumaila-Walters discounting

o the population grows at the rate

@ each generation has a pure rate of time preference p

@ each generation discounts at the rate < p the utility of future
generations

For an event which is to happen at time t, we find that the discount factor
to apply is:

R(t)=e pt+’y/ PE=S)ds = (1 — A) e P+ Ae %, With)\:%
Note that this corresponds to a non-constant rate of time preference

o r(t)=In(l—A)e Pt 4 re

@ r(t) ~ —J in the long term

o r(t) ~Ap+ (1 —A)J in the short term
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The Ramsey problem revisited

max/OOOR(t) u(c () dt,

dk - _ f(k(t))—c(t) and k(0) = ko

dt

where the discount function R (t) satisfies:

R(t)> R(0) =1, R(t) — 0 when t —

There is still a unique optimal control ¢ (t), satisfying the Euler equation:

RI(s) |, u'(c(s)) de
R(s) v (c(s))ds

+f'(k(s))=0 for 0<s (0-optimal)
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Optimal today, suboptimal tomorrow

The problem of time-inconsistency

At some later time t > 0, the decision-maker may reconsider the problem:

max/tooR(t—s)u(c(s)) ds

K k() —cls) s>t k() =k

There is still an optimal trajectory s — (& (s), k (s)), starting from
k (t) =k (t), which satisfies the Euler equation from

R(s—t)  u'(c(s)) de
R(s—t) v (c(s)) ds

+f'(k(s))=0 for t<s (t-optimal)

If (¢ (t),k(t)) = (¢(s),k(s)), then this function must satify both
equations on s > t. This is clearly not possible unless R is an
exponential. The policy t — (¢ (t),x (t)), which is optimal from the

time 0 point of view, is suboptimal at later times
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How do we deal with time inconsistency ?

What is rational behaviour?

@ The concept of an equilibrium strategy:
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@ A strategy ¢ = 0 (k) has been announced and is public knowledge.
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How do we deal with time inconsistency ?

What is rational behaviour?
@ The concept of an equilibrium strategy:
o A strategy ¢ = 0 (k) has been announced and is public knowledge.

@ The decision-maker at time t inherits a capital k (t) from previous
ones.
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How do we deal with time inconsistency ?

What is rational behaviour?

The concept of an equilibrium strategy:

A strategy ¢ = o (k) has been announced and is public knowledge.

The decision-maker at time t inherits a capital k (t) from previous
ones.

@ She can commit all the decision-makers in [t, t + €] ,where ¢ > 0 is
vanishingly small.
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How do we deal with time inconsistency ?

What is rational behaviour?

@ The concept of an equilibrium strategy:
o A strategy ¢ = 0 (k) has been announced and is public knowledge.
@ The decision-maker at time t inherits a capital k (t) from previous

ones.

@ She can commit all the decision-makers in [t, t —|—£] .where e >0 is
vanishingly small.

(]

She expects all later ones to apply the strategy o
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How do we deal with time inconsistency ?

What is rational behaviour?

The concept of an equilibrium strategy:

A strategy ¢ = o (k) has been announced and is public knowledge.

The decision-maker at time t inherits a capital k (t) from previous
ones.

@ She can commit all the decision-makers in [t, t —|—£] .where e >0 is
vanishingly small.

@ She expects all later ones to apply the strategy o

@ She asks herself if it is in her own interest to apply the same strategy,
that is, to consume o (k (t)).
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How do we deal with time inconsistency ?

What is rational behaviour?

The concept of an equilibrium strategy:

A strategy ¢ = o (k) has been announced and is public knowledge.

The decision-maker at time t inherits a capital k (t) from previous
ones.

@ She can commit all the decision-makers in [t, t —|—£] .where e >0 is
vanishingly small.

@ She expects all later ones to apply the strategy o

@ She asks herself if it is in her own interest to apply the same strategy,
that is, to consume o (k (t)).

@ o is an equilibrium strategy if the answer is yes.
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Equilibrium strategies: definition

e If o is applied throughout, the trajectory is ko (t)
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Equilibrium strategies: definition

o If o is applied throughout, the trajectory is ko (t)
@ During [t, t+ €] she changes to ¢ say, getting u (c)e.
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Equilibrium strategies: definition

o If o is applied throughout, the trajectory is ko (t)

o During [t, t+ €] she changes to ¢ say, getting u (c) .

@ On [t + ¢, o0]. the strategy o takes over, and the new trajectory is
ke (t) = ko (t) + eky (1)

(G -Gk

ki (t+¢) =0 (t, k) —c (first variation) (2)
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Equilibrium strategies: definition

o If o is applied throughout, the trajectory is ko (t)
o During [t, t+ €] she changes to ¢ say, getting u (c) .
@ On [t + ¢, 00|. the strategy o takes over, and the new trajectory is
ke (t) = ko (t) + eky (1)
dki [ of o
T (L (5) — & (k k 1
e C G EEACIC PO R

ki (t+¢) =0 (t, k) —c (first variation) (2)
@ The total gain over e =0 is

. [ N u(c)—u(o(k
+ [T R(s—1) 5 (0 (ko ()
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Equilibrium strategies: definition

o If o is applied throughout, the trajectory is ko (t)

o During [t, t+ €] she changes to ¢ say, getting u (c) .

@ On [t + ¢, 00|. the strategy o takes over, and the new trajectory is
ke (t) = ko (t) + eky (1)

e = (G -G kE
ki (t+¢) =0 (t, k) —c (first variation) (2)

@ The total gain over e =0 is

[ U(C)—U(U(k(f))) ]
+ [T R(s—1t) 3¢ (0 (ko (s))) 5% (s, ko (5)) ki (s) ds

e We shall say that o : [0, T] X RY — R? is an equilibrium strategy
if, for every t and k, the maximum in the brackets is attained for

c=c(k(t):
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Quasi-exponential discount

From now on, we take the following specification:

R(t) = Aexp(—dt) + (1 — A) exp (—pt)

Definition
An equilibrium strategy converges to k. if the corresponding trajectories
all converge to ke

dk

G =0 =0 (k). ko= lim k(t) Vk(0)
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An existence theorem

Define k < k by:

- 1
s
Theorem
For every k € |k , k], there exists an equilibrium strategy converging to kooJ

@ There are stationary points, as in the exponential case, but
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An existence theorem

Define k < k by:

1

k) =M+ 1= e (K= 15
0

(TP

Theorem J

For every k € [k , k], there exists an equilibrium strategy converging to ke

@ There are stationary points, as in the exponential case, but

@ There are too many ! The problem of rational choice is not solved
yet
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An existence theorem

Define k < k by:

1

k) =M+ 1= e (K= 15
0

(TP

For every k € [k , k], there exists an equilibrium strategy converging to ke

Theorem J

@ There are stationary points, as in the exponential case, but

@ There are too many ! The problem of rational choice is not solved
yet

@ We will show later that converging to the highest capital k is the only
rational strategy.
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Necessary conditions

If such an equilibrium strategy o (k) exists, define the value functions:

v(k) = /O°° (Ae 4 (1= A) ) u(o (k (1)) dt
w(k) — /Om (Ae™ — (1= A) ) u (e (k (1)) d

They satisfy the following system of ODEs:

<f—1/> vVi—Inv = av+ bw
v

1
14

with a= (6 +p) /2 and b= (6 — p) /2, and we have:
o (k) =1/V (k), 0 (keo)=1/V(keo) = F (ko)

lvar Ekeland and Ali Lazrak (PIMS Summer ¢ Long-tem policy-making, Lecture 5 July 7, 2008

11/ 21



Sufficient conditions

Theorem
If the system

<f—1/> vi—Inv
v
]‘ / /

has a C? solution v (k) , w (k) near ke with:
V (ke) =

av' (keo) + b0 (keo) =

= av+ bw

= bv+cw

then o (k) := 1/V' (k) is an equilibrium strategy converging to ks
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Changing unknowns

i (k) = av (k) + bw (k) —Inf (k),

Take (v (k), pt (k)) instead of (v (k),w (k)) as unknowns. The first
equation becomes:

fv’—l—lnfv/:],t

e if ;1 < 0 this equation has no solution
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Changing unknowns

i (k) = av (k) + bw (k) —Inf (k),

Take (v (k), pt (k)) instead of (v (k),w (k)) as unknowns. The first
equation becomes:

fv’—l—lnfv/:],t
e if ;1 < 0 this equation has no solution
o if = 0 the only solution is A" =1

e if u > 0 it has two solutions v = 1+ x; (1), i = 1,2, with
x(0) =0, x(1) ~ £/
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Where the wild things are

%= ) ww=o
D = au+ (B> —2a)v+alnf(k)+(2A—1)bln 1?:&()”)
@ Initial condition:
1 (ko) = 0. v (k) = a_a(ff_b;) P Inf(ke), x(0)=0
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Where the wild things are

dv 14+ x(p)
- = =\ >
dk Fi H 20
dy 1 14 x(n) 1+x(u) f (k)
. LA o _
dk FK) x(n) (ki v) +a Fk) f(k)
1
D = au+ (b*—2a%)v+alnf(k)+ (24 —1)bln J;E(k()”)
@ Initial condition:
a—(2A—1)b
@ Bearing in mind that x is not smooth x () ~ £,/1
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Changing variables

Take x as the independent variable, so y = x — In (1 + x)

dk x? 1
= f(k

dx ()1—}—XD(X,k,1/)'
dv 5 1

R — X —

dx D (x, k,v)

e D(x, k,v)=
(2ax+ (b2 —a®) v+ [(2A —1) b—a] In L) (1 + x) — xf
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Changing variables

Take x as the independent variable, so y = x — In (1 + x)

dk x2 1
= f(k

dx ()1—}—XD(X,k,1/)'
dv 5 1

R — X —

dx D (x, k,v)

e D(x, k,v)=
(2ax+ (b2 —a®) v+ [(2A —1) b—a] In L) (1 + x) — xf
@ Initial condition:

x(0) =0, D(0,k(0),v(0))=0
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Blowup

We introduce a new variable s, and the system becomes

d

d%: = D(x, k,v)
dk x2
— = f(k

ds ( )1+x
dv 5

E = X

The linearized system near (0, k (0),v (0)) then is:

g [ at(A—1)b—f (a—(2A-1)b) T p -2 X
o k | = 0 0 0 k
v 0 0 0 v
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Concluding the proof

If a+ (24 — 1) b # ' (ke), we can use the central manifold theorem. If
a+ (20 —1) b = ' (ke ), we must to a further blowup. In all cases, we
find a smooth solution(possibly several) with:

p 1

vk = k)

, B 1 2f (ko) — (6 +p)
S TS
V/,(koo) — (5_'( (koo)) (f (koo)—(S) 1
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More about the degenerate case
Computing D (x, k, v) when ' (ke) = a+ (2A — 1) b, we get:

dx

B = (0B (k k) -y (K) (K~ ko) x+ (82— %) (14 (
dk , f (k)

ds x 14+ x

v 5

4 = X

where «, B, v are smooth functions of one variable such that:

2 (0) = 3a+(2A—1)b, p(0) = (2A—1)b—a) Z((::)) 7(0) = (0) -

We then perform the change of variables K (s) := (k (5) — keo) x (s)°
and V (s) := (v (s) — vao) x (s) > One finds 9K (0) = f (k) # 0, one can
take K instead of s as the independent variable, and we get a regular
system of ODEs for x (K) and V (K)
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Estimates

S - o dk :
Linearizing the equation of motion &t = f (k) —  :

dx [ v’ (keo)
== (f (koo)+>x

V”(koo)
ko) <

1

1-A
+ p

Convergence to ke requires that f/ (ke ) + 0, hence:

A+ (1= A)p < ' (ke) <

>
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Stability analysis
Take a point ke. At a neighbouring point k. = ko + € compare two
equilibrium strategies

Q@ 0 converging to ke
@ 0, converging to ke

6 — <2+(1;A)>Inf(koo)+vo(koo)s
ve = <2+(1;/\)>Inf(kg)
(5+557) w1 i

Ve =V = |:

The bracket is negative, so v; is a superior strategy if ¢ > 0, which is
always possible unless ko = K (so that k. is not an allowable point for
convergence)
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Rational behaviour again

/000 [Aexp (=dt) + (1 — A)exp (—pt)] u(c (1)) dt,

dk
0= f(k(t))—c(t) and k(0) = ko

This has infinitely many equilibrium strategies, each of them converging to

some k € [k, k]

e If k < k, future generations will eventually find k more advantageous
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Rational behaviour again

/000 [Aexp (=dt) + (1 — A)exp (—pt)] u(c (1)) dt,
dk

E:f(k(t))—c(t) and k (0) = ko

This has infinitely many equilibrium strategies, each of them converging to
some k € [k, k]

e If k < k, future generations will eventually find k more advantageous

@ The whole strategy then unravels from the end: it is not credible
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Rational behaviour again

/:° A exp (—6t) + (1 — A) exp (—pt)] u (c (1)) dt,
dk

E:f(k(t))—c(t) and k (0) = ko

This has infinitely many equilibrium strategies, each of them converging to
some k € [k, k]

e If k < k, future generations will eventually find k more advantageous
@ The whole strategy then unravels from the end: it is not credible

o Rational choice is k = k

lvar Ekeland and Ali Lazrak (PIMS Summer ¢ Long-tem policy-making, Lecture 5 July 7, 2008 21 /21



